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ABSTRACT: One central issue in the design of radar waveform is its capability to resolve two closely spaced 

small targets, which are located at long range.  In this context the most promising technique that is used by 

modern radar systems is pulse compression. This technique combines the advantages of energy associated with 

long pulse-width and range-resolution corresponding to  a short duration pulse. The matched filter used in 

receiver accumulates the received energy in to a short pulse.  This paper presents an overview of the aperiodic 

and periodic phase coded waveforms for Coherent and Non- Coherent Pulse Compression radar systems.   
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I. INTRODUCTION 

Woodward’s [1] studies play significant role in the 

context of radar signal design. The basic concept of his 

presentations is to achieve energy requirement for 

detection of a target at long ranges, a wide pulse can be 

transmitted. after meeting the detection requirements, the 

high range-resolution conditions are simply achieved by 

modulating or coding the transmitted pulse. This new 

technological development in the field of radar waveform 

design is known as pulse compression technique [2-5]. 
Two widely used modulation or coding techniques are 

either frequency modulation or phase modulation. Under 

the frequency modulation technique, Linear Frequency 

Modulation (LFM), stepped LFM, Non-linear FM 

(NLFM), discrete frequency shift (time-frequency coding) 

waveforms are considered whereas phase coding includes 

biphase (Barker codes, compound Barker codes etc.) and 

polyphase codes (Frank codes, P1, P2, P3, P4 codes etc.) 

[3, 6, 7].  Generally, biphase code modulation is more 

preferable in pulse compression radars because of its 

simplicity in generation and needs less signal processing 

in the receiver. Two basic pulse compression techniques 
are Coherent Pulse Compression (CPC) and Non-coherent 

Pulse Compression (NCPC). This paper presents the 

waveforms that can be used in coherent and non-coherent 

radar systems for enhancing the detection and resolution 

capabilities.   

II. PHASE CODED PULSE COMPRESSION 
WAVEFORMS 

In phase-coding technique, the duration of the pulse ‘τ’ is 

considered as a connecting set of N subpulses or chips of 

duration T = τ/N, and the phase of each subpulse is 
chosen either 00 or 180°. The transmitted frequency of 

each chip remains constant but the phase of each subpulse 

is switched between 0° or 180° based on some 

predetermined values. That is, each pulse of such 

waveform has a 100% duty cycle. The correlated 

compressed pulse is achieved at the output of matched 

filter used in radar receivers. In phase coded signals, the 

pulse compression ratio is N, where N is the number of 

subpulses (N = τ/T), which is approximately equal to Bτ, 

where B ≈1/T.  The output of the matched filter will have 
a narrow peak (mainlobe), whose magnitude is N times 

that of the magnitude of long received pulse, and 

mainlobe width will be equal to time duration of single 

chip ‘T’. The remaining portions of the matched filter 

output that extend over –τ to τ, are referred as 

“sidelobes”. When such waveforms are used in radar 

applications for the detection of small targets, the 

sidelobes must be low. In other words, the main 

parameter for the aptness of sequences is low peak 

sidelobes (PSL) at the output of matched filter.  Fig. 1 
shows the correlated output of Barker code of length 13. 

This is an example of coherent pulse compression. In case 

of CPC, the received signal is time delayed version of 

transmitted signal and matched filter output is referred as 

autocorrelation function.  

III. NON-COHERENT PULSE COMPRESSION 

 Non-coherent pulse compression (NCPC) is a new 

variant of pulse compression and was suggested by N. 

Levanon [8-10] and some of the advantages of non-

coherent pulse compression technique are discussed in 

[11].  The basic idea of NCPC is to apply the pulse 
compression technique to non-coherent radars and radar 

like systems such as lidar, where transmitted signal is in 

the form of on-off {1, 0} and referred as on-off keying 

(OOK) signal. Fig. 2 shows the receiver block diagram of 

non-coherent pulse compression technique. The reference 

signal is the two-valued sequence {1, −β} which is 

derived from the transmitted signal. 
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Fig. 1. Autocorrelation function of Barker code N =13. 

N = [1  1  1  1  1  -1  -1  1  1  -1  1  -1  1] 

 

Fig. 2. Block Diagram of Non-Coherent Pulse Compression Receiver. 

The simplest way of generating the on-off keying (OOK) 

signals are based on Manchester-coded binary sequences 

(e.g., Barker, MPSL etc.). The procedure of generating a 

Manchester-coded waveform from Barker code is (1 → 

10, 0 → 01) and Barker sequence of length 13 becomes 

26.  Therefore, the transmitted signal is sequence a, of 

length N=26, which is given in (1) is a Manchester-coded 

Barker sequence. Sequence b is the reference sequence 

given in (2), which is derived from the sequence a, by 

replacing ‘0’ with ‘-1’ that is β value in this case is 1.  
The output of the mismatch filter is cross-correlated and 

shown in Fig. 3.  The mismatch filter output is given by 

(3). 

a = [1   0   1   0   1  0   1  0   1  0   0 1   0  1  1  0  1 0  0 1 1  

0  0  1  1  0]                                                                     (1) 

b = [1 -1  1 -1  1 -1  1 -1  1 -1  -1  1  -1  1  1  -1  1 -1  -1  1   

1  -1  -1  1   1   -1].                                                          (2) 

�|��|�
�

���
	�                                                                               (3) 

 
Where ak and bk are the elements of a and b respectively 

given in equations (1) & (2). 

 

Fig. 3. Cross-correlation of the transmitted and reference signals, Barker Manchester code N=26 

a= [ 1   0   1  0   1  0   1  0   1  0   0 1   0  1  1  0  1  0  0  1  1  0  0  1  1  0] 

b= [1 -1  1 -1  1 -1  1 -1  1 -1  -1  1 -1  1  1  -1  1 -1  -1  1   1  -1  -1  1   1   -1] 
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IV. PRN CODED WAVEFORMS 

It is well known that Barker codes exhibit lowest 

aperiodic autocorrelation peak sidelobe equal to 1, but do 

not exist for the lengths greater than 13.  Another type of 

biphase sequences that can be generated for large lengths 

are pseudo-random-noise (PRN) or M-sequences. The 

name derived from the fact that the algorithm used to 

generate the 0° and 180° phase shifts is also used to 

generate pseudo random numbers.  PRN waveforms 
widely used in spread spectrum and other digital 

transmission systems. PRN waveforms or M-sequences 

can be generated for lengths of 2 1
M

N = −  where M  

is the number of feedback shift registers. Fig. 4. Shows 

the m-stage feedback shift register where each shift 

register element is flip-flop and the adder gives modulo-2 

addition. These M-sequences are having well controlled 

sidelobes and when the length of the sequence increases, 

better sidelobe suppression is achieved. 

 

Fig. 4.  M-stage Feedback Shift Register. 

V. PERIODIC WAVEFORMS 

A. Periodic Binary Waveforms 

This section presents another type of processing of M-

sequences to take the advantage of an interesting property 

of M-sequences. The property is referred as periodic 

autocorrelation property.  

Let si(n) be a sequences of length N and its periodic 

repetition with period τ is represented by ŝi(n) = si(n + τ). 
Equations (4) and (5) are showing the periodic 

autocorrelation and cross-correlation functions 

respectively, and can be represented as:  

 

���(τ) = � ��(�)
���

���
ŝ�∗(� + τ)                                              (4) 

  

���(τ) = � ��(�)
���

���
ŝ� ∗(� + τ)                                             (5) 

 

���(�) =  � �, for � =  0
0, for  �� 0  #                                                (6) 

M-sequences exhibit lowest periodic autocorrelation 

function (PACF) equal to |Rii(τ ≠ 0) = 1|.  M-sequences 

which are represented as two valued binary codes {±1}, 

having code length N, produces periodic auto-correlation 

of peak value equal to N and uniform sidelobes of value -

1.  Fig. 5 shows the periodic autocorrelation function of 

M-sequence of code length 7. The motivating property of 

M-sequences is that in PACF, the magnitude of sidelobes 

is constant and level is  ‘-1’ and can be given as: 

R%%(τ) = & N τ = 0, N, 2N, ⋯
−1 otherwise

#                                      (7) 

 

Fig. 5. Periodic Autocorrelation Function of M-sequence 

N=7. 

 

Fig. 6.  Periodic Cross-correlation of M-sequence N=7. 

This property was also exploited in [12, 13] for the 

construction of perfect periodic binary sequences with 

good autocorrelation properties that can be used in 

communications and continuous wave (CW) pulse 

compression radar systems. These sequences are suitable 

for coherence processing of radar signals. However, for 

non-coherent applications, such as non-coherent radar 

(using magnetrons), lidar, ultrasound, ground penetrating 

radar, optical masks and optical time domain 

reflectometer (OTDR) etc. need on-off {1, 0} sequences 

in transmitted signal. In this context Levanon [10] and 
Jahangir [14] demonstrated the ideal periodic correlation 

properties of M-sequences by taking the unipolar version 

{1, 0} for transmission and cross-correlating with the 

reference signal {+1, −1} of the same sequence. Fig. 6 

shows the cross-correlation property of such M-sequence 

signal of length 7, where all off-peak sidelobes are zero. 

This can be achieved only when the number of 1’s must 

be larger than the number of 0’s by one element in 

transmitted signal. By observing Fig. 6, one can 

understood that the value of the mainlobe is 4 because the 

number of 1’s are 4, and number of 0’s are 3 in the 
transmitted sequence.  It is evident that this ideal periodic 

cross-correlation property is achieved at the cost of 

energy loss.  

It specifies that when M-sequences are used in coherent 

pulse compression systems, the energy efficiency is 100% 

whereas when these sequences are modified for the 

applications of non-coherent pulse compression systems, 

the energy efficiency is slightly greater than 50% and 

approaches 50% when sequence length is large. This is 

due to the reduction in duty cycle. The equation for 

calculating efficiency (η) is given as: 
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                                                             (8) 

If the duty cycle of the transmitted signal is reduced, it 

decreases the amount of energy in the transmitted pulse 

that decides the maximum detection range of target. 

Therefore, there is a need to identify the sequences of 

large length with less number of zeros and having ideal 

cross-correlation property.   

B. Perfect Periodic Ternary Waveform 

This section deals with the search of sequences, which 

satisfy two conditions: (i) to achieve high range resolution 

needs longer sequence length. (ii) more number of 1’s 

than ‘0’s in a sequence to achieve higher duty cycle.  The 

additional advantage of using higher average duty cycle is 

that the pulse–train conflict between average power and 

unambiguous range also avoided [10]. Therefore, this 

paper presents the ternary sequences which have good 

energy efficiency and having perfect periodic 

autocorrelation property that are useful for both coherent 

and non-coherent radar applications. In this background, 

work of Hoholdt and Justesen [15] is significant. Two 
sequences of lengths 21 and 73, which are optimized in 

[15] are considered here in this paper. Fig. 7, exhibits the 

autocorrelation function of perfect periodic ternary 

sequence N = [1 1 1 1 1 -1 1 0 1 0 -1 1 1 -1 0 0 1 -1 0 -1 -

1], which consists 5 0’s and 16 +1’s and -1’s. This gives 

that the peak value of autocorrelation function is 16 and 

all sidelobes are zero. The efficiency of the sequence is 

76%. The sequences of this type are widely preferred in 

radars where coherent processing is used. On the other 

hand, when this sequence is used for non-coherent radar 

application, on-off periodic waveforms are required. 

Therefore, all -1’s becomes +1’s and zeros remain same. 

This will not degrade the energy efficiency of the 
transmitted signal. The only problem here is to derive the 

reference signal so that the cross-correlation between 

transmitted signal and reference signal produces zero 

sidelobes. Fig. 8 shows the cross-correlation function 

after non-coherent processing. It is evident from the fig. 7 

and 8 that this sequence can be used for both coherent 

and non-coherent pulse compression radar systems 
simultaneously. 

In table 1, another sequence of length N = 73 is also 

considered. When signal is processed coherently, the 

transmitted and reference signals are same whereas for 

non-coherent processing reference signal is different from 
the transmitted signal.  Here it is calculated the value of β 

for reference signal when used for non-coherent 

processing. In both the cases only 9 zeros are in 

transmitted signals and energy efficiency is 87.7%. 

 

Fig. 7.  Coherent processing of Ternary Signal N = 21. 

Signal & Reference =  [1  1  1  1  1  -1  1  0  1  0  -1  1  1  -1  0  0  1  -1  0  -1  -1]. 

 

Fig. 8. Non-coherent processing of Ternary Signal N = 21. 

Signal =   [1  1  1  1  1  1  1  0  1  0  1  1  1  1  0  0  1  1  0  1  1] 

Reference = [1  1  1  1  1  1  1  -3  1  -3  1  1  1  1  -3  -3  1  1  -3  1  1] 

Table 1. 

N 
(η 

in %) 
Coherent Processing On-Off signal for Non-coherent Processing 

 

73 

 

87.7 

Transmitted Sig: [-1 0 0 1 0 1 1 1 0 1 1 -1 1 -1 1 -1 0 

1 1 1 1 -1 -1 1 1 -1 -1   -1  1 -1 -1 -1 0 1 1 -1 1 0 1 1 1 

1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 0 1 1 -1 1 -1 -1 -1 1 

0 1 1 -1 1 1 -1 1 1] 

Reference Sig: [-1 0 0 1 0 1 1 1 0 1 1 -1 1 -1 1 -1 0 1 

1 1 1 -1 -1 1 1 -1  -1   -1  1 -1 -1 -1 0 1 1 -1 1 0 1 1 1 1 

-1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 0 1 1 -1 1 -1 -1 -1 1 0 

1 1 -1 1 1 -1 1 1] 

 

Transmitted Sig: [1 0 0 1 0 1 1 1 0 1 1 -1 1 1 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1] 

Reference Sig: [1 β β 1 β 1 1 1 β 1 1 1 1 1 1 1 β 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 β 1 1 1 1 β 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 β 1 1 1 1 1 1 1 1 β 1 1 1 1 1 1 1 1:  β = -7] 
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VI.  CONCLUSION 

Non-Coherent Pulse Compression (NCPC) radars or radar 

like systems use coded on-off keying (OOK) modulation. 
NCPC is envelope detector that depends on intensity of 

signal reflected from target.  Aperiodic on–off pulse 

sequences for such systems are discussed using 

Manchester coded waveform of Barker code of length 13. 

The major drawback of the Manchester coding is that two 

negative peaks appear near the mainlobe and the signal 

may go undetected if it falls in this range. Coherent and 

Non-coherent pulse compression waveforms are 

discussed by taking the examples of M-sequences and 

perfect periodic ternary sequences. It is also demonstrated 

that the perfect periodic ternary sequences can be used 

simultaneously without degrading the energy efficiency 
for both coherent and non-coherent applications. 
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